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Abstract. Font recognition is an important and challenging problem in
areas of Document Analysis, Pattern Recognition and Computer Vision.
In this paper, we try to handle a tougher task that aims to accurately
recognize the font styles of texts in natural images by proposing a novel
method based on deep learning and transfer learning. Major contribu-
tions of this paper are threefold: First, we develop a fast and scalable
system to synthesize huge amounts of natural images containing texts in
various fonts and styles, which are then utilized to train the deep neu-
ral network for font recognition. Second, we design a transfer learning
scheme to alleviate the domain mismatch between synthetic and real-
world text images. Thus, large numbers of unlabeled text images can be
adopted to markedly enhance the discrimination and robustness of our
font classifier. Third, we build a benchmarking database which consists
of numerous labeled natural images containing Chinese characters in 48
fonts. As far as we know, it is the first publicly-available dataset for font
recognition of Chinese characters in natural images.

1 Introduction

Font recognition is an important and challenging problem in areas of Document
Analysis, Pattern Recognition and Computer Vision. Automatic font recognition
can greatly improve the efficiency of many people’s work. First and foremost, it
helps people (not limited to designers) to know what their favorite font styles
are in the text in images they see. Besides, font producers employ it to find
copyright infringements by automatic font identification. Moreover, font recog-
nition is useful in improving the accuracy and time of optical text recognition.
Actually, it is a specific problem of object detection and classification, in which
deep neural networks [4,5,9,13,14] have made great success. As we know, meth-
ods based on deep neural network demand large-scale training data and thus
time-consuming manual labeling is typically required. Unlike other object de-
tection and classification tasks, the real-world font annotations are extremely
hard to get because large numbers of experts are needed to identify the fonts
of texts in images. This problem can be resolved to some extends by synthesiz-
ing high-quality images with texts in different fonts. However, there still exist
domain mismatch problems between synthesized and real-world text images. In
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this paper, we put emphasis on how to synthesize high-quality text images of
different fonts and how to conduct effective learning from massive unlabeled
images without supervision.

Up to now, many algorithms have been proposed for font recognition, such
as modified quadratic discriminant functions (MQDF) [8], wavelet feature de-
scriptors [3], the texture descriptor based on fractal geometry [11], Gaussian
mixture models [15], local binary patterns (LBPs) [17], local feature embedding
(LFE) [2] and sparse features [16] etc. However, these traditional methods based
on handcrafted features are not able to satisfactorily deal with noisy data.

Recently, neurodynamic models have been presented for solving font recog-
nition problem. The DeepFont system proposed in [20] employs a Convolutional
Neural Network (CNN) architecture to recognize the font of English text lines. In
addition to synthetic data augmentation, a Stacked Convolutional Auto-Encoder
(SCAE) trained with unlabeled real-world text images is also utilized to reduce
overfitting. Another system reported in [18] is specifically designed to handle the
Chinese Character Font Recognition (CCFR) task. They considered CCFR as
a sequence classification problem and developed a 2-D long short-term memory
(2DLSTM) model to capture a character’s trajectory and identify its font style.
Although these recently-developed methods could markedly outperform tradi-
tional methods, they also have their own shortcomings. For instance, the system
proposed in [20] can only deal with alphabetic language systems, such as English,
that consist of small number of different characters. For hieroglyph like Chinese
with more than 6000 different characters whose geometric structures are often
quite complicated, through experiments we found that the SCAE does not work
well. For real-world images, the method developed by Tao et. al [18] may fail
to capture characters’ trajectories especially when they are under complicated
background and appear with various special effects.

Based on above-mentioned reasons, we select Chinese as one of the text
languages in our experiment and propose a transfer learning algorithm to make
use of unlabeled text images. Also, our system aims to recognize the font of texts
in natural images, instead of synthetic text images adopted in [18]. Moreover, our
method can be applied to any other language systems. Experiments conducted
on publicly-available databases demonstrate the effectiveness of our system for
font recognition in natural images.

2 Overview of the System

As shown in Figure 1, the proposed font recognition system can be built as fol-
lows. First, we employ our engine to synthesize huge amounts of natural images
containing texts in various fonts and styles and meanwhile information of each
text line’s font and location is also recorded. Then, by using the location infor-
mation we train a text localizer to automatically detect texts in images collected
from internet. Thus, we have both labeled synthetic text images and unlabeled
real-world text images. Afterwards, our initial font classifier base on Convolu-
tional Neural Networks (CNNs) can be obtained by training on labeled synthetic
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Fig. 1. The pipeline of our font recognition system.

text images. Finally, the proposed transfer learning algorithm is implemented to
make use of unlabeled data and improve the classifier’s performance on recog-
nizing fonts of texts in natural images. Details of each step in our system will
be explained explicitly in the following sections.

3 Synthesizing Text Images

The synthetic text image datasets such as the one described in [20] only contain
word-level image regions and simple backgrounds. Thus they are unsuitable to
train text detectors and font classifiers for natural images. The method proposed
in [6] for generating synthetic text images naturally blends texts in existing natu-
ral scenes, using off-the-shelf deep learning and segmentation techniques to align
texts to the geometry of a background image and respect scene boundaries. In-
spired by the idea of this method, we develop a new system to generate synthetic
text images with texts in different fonts and styles in cluttered conditions. As
long as we get the TTF (True Type Font) or OTF (Open Type Font) files of
some fonts, we can generate nearly real text images in these fonts automatically,
along with the font label and location of each character.

Stepl: Step2:
Select a background image Get its depth image and segmentation image

Step3: Step 4: Step S:
Select a region and get its | Transform sample text and Poisson image editing
surface normal assign font and color to it.

Fig. 2. Main steps to blend texts into a background image.



3.1 Blending Texts into Images

As shown in Figure 2, texts can be naturally blended into a given image by using
our system. As we know, texts tend to be contained in well-defined regions in real-
world images, instead of crossing strong image discontinuities. For this reason,
we segment the image into contiguous regions based on the cues of local color
and texture information using the approach presented in [1]. After obtaining
segmentation regions, we choose suitable candidates from them for placing texts.
Suitable regions should not be too small, should not have an extreme aspect ratio,
or have surface normal orthogonal to the view direction.

In natural images, texts are typically painted on top of surfaces. In order
to achieve a similar effect in our synthetic data, we need to calculate the local
surface normal of the region where we are going to put the text. To get the local
surface normal of each contiguous region, we need to obtain an dense pixel-wise
depth map, which can be estimated by the CNN model proposed in [10].

Next, the text sample is assigned with a color and a font. The font is chosen
randomly from a font list. With this font’s library file we can render the glyphs
of text. Then the text is assigned with a color which matches well with the
background color. Finally, the text is transformed according to the local surface
orientation and is blended into the scene using Poisson image editing [12].

Note that, here we record the font type for each character instead of its con-
tent. In our experiment, the text’s font is chosen randomly from one of the fonts
mentioned in Section 6. Beyond that, we introduce more data augmentations to
single character images to make them possess more visually similar appearance
to real-world data. Details are discussed in the following section.

3.2 Text and Image Source

We employ news corpora of different languages, including Arabic, Bangla, Chi-
nese, Japanese, Korean and English, as our text source. Each time we randomly
select some words from the corpus and blend them into a background image.
The background image for blending text can neither be too simple nor too
complex. To cover common scenes in our daily lives, we select images from Open
Images, an open dataset with 9 million URLs to images that were uploaded by
users and have been annotated with labels spanning over 6000 categories. We
pick about 30,000 images from the dataset with the labels such as “person” and
“natural scenes” instead of “street” etc. whose backgrounds are too cluttered.

3.3 Data Augmentation

The synthetic texts generated by the above method are painted on flat sur-
faces and match well with the background color. As a matter of fact, texts
photographed in natural scenes may be blurred or in uneven illumination. To
increase the diversity of our synthetic dataset, we apply some augmentation pro-
cessing to those synthetic text images, including rotation, changing contrast and
brightness, GaussianBlur, adding Gaussian noise, and shear. The parameter of



each effect is selected randomly within certain range and these effects are stacked
on one image.
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Fig. 3. Texts in different languages blended into natural images.

Fig. 4. Blending Chinese texts in different fonts into natural images.

4 Text Detection and Font Recognition

To recognize the fonts of texts in natural images, we first need to accurately
localize texts and then correctly identify its font style. Since text spotting tech-
niques have been extensively studied in the last few years [6,7,19], our work
does not focus on this problem. The synthetic images with text location labels
are utilized to train a CTPN (Connectionist Text Proposal Network) [19] as our
text localizer, which detects text lines by finding and grouping a sequence of
fine-scale text proposals.

The font recognition methods employed in this paper are patch-based CNN
models, the same as [20]. We first extract square patches from a word image,
and send them to the convolutional neural network. Each extracted patch, whose
side length equals the word image’s height, contains one or more characters from
the word image. For each patch, the network outputs a vector with each element
corresponding to the probability it belongs to each font. we average all vectors to
determine the final classification result of the word image. Our font classifiers are
constructed by modifying two famous CNN models (see Figure 5), i.e., AlexNet
and VGGI16, proposed in [9] and [14], respectively.



108*108+3 108*%108*64 @ ChnvalticiiReiU

' MaxPooling

' MaxPooling + Normalization
Fully Connected + ReLU

@ Softmax

THT*512  4%4%512
4096 4096 m
=

54%54*128

4096 4096 m

AlexNet

Fig.5. An illustration of two modified CNN models for font recognition. A 108*108
image patch is put into a network and the network ouputs a m-dimensional probability
vector (m represents the number of font classes). AlexNet is a lightweight network with
fast training speed while VGG16 is a much deeper and more complex network. As we
can see, VGG16 has more convolutional layers and smaller convolution strides than
AlexNet.

5 Boosting Accuracy via Transfer Learning

Due to the domain mismatch between synthetic data and real-world data, there
still exist a lot of text images that can not be classified correctly. Thus, we want
to exploit more information from unlabeled real-world text images. Fortunately,
real-world text images are easy to obtain from internet. For example, when we
type keywords like “text images” in a search engine, we can get large numbers
of images with texts in various kinds of fonts.

The proposed transfer learning algorithm aims to further improve the per-
formance of font recognition for real-world text images by making use of the
knowledge we gain from the synthesized data. The key idea of our method is
to try to assign the unlabeled text images with correct tags by using our initial
font classifiers. Then, these newly-labeled texts images can be adopted with our
synthetic images to train our CNN-based classifiers again to make them more
robust and effective.

It is worthy of note that how we label text images whose font categories are
out of the range we consider. Since some of them have similar font styles, we
should label them with the most similar fonts included in our font list. Mean-
while, we discard those images whose font styles are very different against the
fonts that we are interested in.

The problem to be addressed can be formulated as follows. Assume that the
unlabeled dataset is composed of n text lines (a text line contains one or more
words), let 2 be the ith text line of our dataset. The text line % contains ¢ (i)
extracted patches and each patch in z? is denoted by x; (1<i<n,1<j<t(4)).



Our m-class font classifier takes a single patch as input. After feeding a patch
% into our pre-trained classifier, we get the probability distribution P (z%) =
(Py(25), P2 (%), ..., P (25)), in which P (2}) means the probability of
belonging to the font fi (1 <k <m), and ), P (x;) = 1. The classification
result of x; is L, (xé) = argmaxy P (xé) For a given text line, we intend
to predict each patch’s most probable font or discard it based on the above-
mentioned analyses.

Intuitively, the font type of patch image
classification result L, (z%). If P, (a2) (%) is smaller than a threshold, we dis-
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can be labeled according to the

card this patch. However, our pre-trained CNN classifier may make mistakes
when handling real-world images it has never seen before. If we label these un-
known images with inaccurate classification results, the classifier would be incor-
rectly supervised which often results in a decline in its performance. Typically,
text images possess a property that characters (or words) in one text
line are usually in the same font style. On account of this, the font labels of
patches in one text line identified by the classifier are supposed to be identical. If
the labels are not identical, it means that our pre-trained classifier fails to adapt
new data. Through a statistical analysis of all patches’ classification results in
the same text line, we select a representative font style to relabel them. In this
manner, the probability of making mistake can be greatly reduced.

Our method is designed as follows: for each font fi (1 <k < m), we define
two variables to estimate how likely this entire text line z? is in font fi. The
first variable is A (k) = Z;(;)l 1{L, (x;) = k}, meaning the times that label
k appears in the predicted labels of patches in z‘. The other one is B (k) =
Z;(:Z)l Py (m;)7 denoting the probability of 2? belonging to font f, accumulated
by patches in the text line. We use A as the first sort key and B as the second
sort key to rank these fonts (f1, fo, ..., fm) (fx ranks ahead if A (k) or B (k) is
higher). Let the font ranking first be f;, if B (I) > th«t (i) (th is set to 0.4 here),
we assign the label of each patch in text line z* with f;. The method is actually
a voting procedure to decide a text line’s font. As a general rule, in turn-based
games who wining more rounds wins the game. The pseudo code of this method
is shown in Algorithm 1.

6 Experiments

6.1 Font Recognition of Chinese Text Images

To measure the performance of our font recognition method, we need to col-
lect real-world text images containing characters in various font styles as our
test dataset. We cooperate with Founder Electronics, one of the world’s largest
Chinese font producer, to build a large-scale database for font recognition in nat-
ural images, named VFRWIild-CHS!. Specifically, the VFRWild-CHS dataset
consists of 816 text images captured in natural scenes, from which 6,827 single

! http://http://www.icst.pku.edu.cn/zlian/FRWild



Algorithm 1 Predicting Labels for Unlabeled Text Images

Input The font label list (fi, f2,...,fm), the unlabeled patches set T =
{m;\l <i<n,1<j<t (z)}, the pre-trained font classification function P.

Output The most probable font L (ac;) for each patch ZE;

1: fori=1—ndo
2 for j=1—1t(i) do
3 (P Pa(a)) o P () P (a)
4 Ly (z}) + argmax,, Py (z})
5: end for
6.
7
8

fork=1—mdo
A (k) = 350 1{L, (2f) = k}
: B (k) + X1 Py («5)
9: end for
10: sortedlist < sort(fi, f2, ..., fm), sortkey(A, B)
11: fi + sortedlist|0]
12: if B(l) > th«t(i) then

13: for j=1—1t(i) do
14: L () < fi

15: end for

16: end if

17: end for

Chinese character images in 48 fonts are extracted and labeled. As we can see
from Figure 6, the noisy backgrounds and special effects added artificially make
it quite difficult to locate the characters and recognize their font styles.

We prepare three different datasets to train our font classifier. The first
dataset, denoted as Syn_Simple, consists of simple synthetic character images
with no augmentations (black characters rendered in white background images).
The second dataset, denoted as Syn_Blend, is composed of single Chinese char-
acter images cropped from synthetic images generated by our text image synthe-
sizing method without data augmentations. Sample images of these two datasets
are shown in figure 7. We apply the augmentation methods mentioned in Section
3.3 to Syn_Blend and get a larger dataset Syn_Blend_Aug. Detailed information
of these datasets is described in Table 1. Besides, we build a database consisting
of more than 200,000 unlabeled images which are collected from internet (See
Figure 8).

We compare the performance of our classifiers on the test set which are
trained on the above-mentioned training datasets, respectively. Through our ex-
periments, we find that compared to Syn_Simple, the synthetic text images gen-
erated by our method can significantly improve the classification performance on
our test dataset. As it can be observed from Table 2, the accuracy of our classifi-
er based on AlexNet and VGG16 is very low when trained with Syn_Simple, but
improves considerably when trained with Syn_Blend and Syn_Blend_Aug. The
result is reasonable because the images in Syn_Blend and Syn_Blend_Aug look
more natural than images in Syn_Simple. To sum up, the method mentioned in
Section 3 is an effective solution to recognize fonts of texts in natural images.



Fig. 6. Examples of single Chinese character images cropped from text images in our
test dataset.
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Fig. 7. The Left images (in Dataset Syn Blend) are synthetic characters generated
by our method. The right images (in Dataset Syn_Simple) are corresponding blank-
background and no-special-effect characters.

Fig. 8. Some text lines detected by the our text localizer. These images come from
Internet and have some special effects and manual designs our synthetic images don’t
have.
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Table 1. Comparison of all datasets adopted in our experiment

name Source|Label?|Purpose| Size |Class
VFRWIild-CHS | Real Y Test | 6,827 | 48
Syn_Simple Syn Y Train |324,624| 48
Syn_Blend Syn Y Train |474,757| 48
Syn_Blend_Aug | Syn Y Train |670,873| 48

Unlabeled Dataset| Real N Train |229,044|N/A

! The unlabeled dataset consists of text line images. The
others consist of single Chinese character images.

Next, we would like to verify the effectiveness of our transfer learning scheme.
As shown in Table 2, our transfer learning algorithm further improves the classi-
fier’s performance. On the contrary, if we directly label each character with the
predicted result given by the initial classifiers (discard it if the classification prob-
ability is lower than th), we witness a decline in classification accuracy: AlexNet
top-1 70.30%, VGG16 top-1 83.03% in our experiment. This demonstrates the
effectiveness of the proposed transfer learning scheme in font recognition tasks.

Table 2. Our method’s performance on VFRWild-CHS

Accuracy Method

Model
AlexNet(top-1) 13.85%169.30%|71.14%|77.75%
AlexNet(top-5) 46.80%|90.75%(91.12%193.93%
VGG16(top-1) 34.21%|81.93%(84.83%|87.68%
VGG16(top-5)  |53.68%|95.22%96.14%97.53%

133, SB and SBA denote our proposed meth-
ods trained on Syn_Simple, Syn_Blend and
Syn_Blend_Aug datasets, respectively. TL denotes
transfer learning.

SS SB SBA | TL

6.2 Comparison with Other Methods

We compare the performance of our methods with other recently-proposed ap-
proaches on VFRWild-CHS. LFE (local feature embedding) introduced in [2]
is a representative traditional method which fuses handcrafted local features.
DeepFont F introduced in [20] uses synthetic text images with traditional aug-
mentations to train a convolutional neural network. These two methods, along
with our SBA method, are supervised learning methods. DeepFont CAEFR [20]
and our transfer learning method are both semi-supervised methods exploiting
unlabeled real-world images.

For comparative analysis, we employ the same network architecture
as [20], which is very similar to AlexNet. The difference is that we utilize meth-
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ods introduced in Section 3 and 5 to synthesize training data and exploit unla-
beled data. As shown in Table 3, our method outperforms other methods. The
VFRWild-CHS dataset features noisy backgrounds and distortions, which can
not be properly handled by methods of [2] and [20]. Results shown here verify
the effectiveness and generality of our methods.

Table 3. Comparison of different methods’ performance on VFRWild-CHS

Accuracy
Methods TOP-1 | TOP-5
LFE [2] 32.65% | 60.69%
DeepFont F [20] 50.26% | 72.93%
SBA (ours) 70.97%|91.05%
DeepFont CAEFR [20]| 55.58% | 76.21%
TL(ours) 77.68%|93.97%

7 Conclusion

In this paper, we developed a new system for accurate font recognition in nat-
ural images. One major advantage of our system is that time-consuming and
costly font annotations for images in the training dataset can be avoided. On
the one hand, by blending text into background images and implementing data
augmentations, the synthesized text images look more real and thus large-scale
high-quality training data can be automatically constructed for our CNN based
font classifiers. On the other hand, the introduction of our transfer learning
algorithm exploits a large corpus of unlabeled real-world images and thereby
significantly improves the capacity and accuracy of classification. Experimental
results on a publicly-available database we built demonstrated that considerable
good performance of font recognition in natural images can be obtained by using
our system.
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