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Abstract
In this paper, we propose a novel Sequence-to-Sequence model based on metric-based meta learning for the arbitrary style
transfer of online Chinese handwritings. Unlike most existing methods that treat Chinese handwritings as images and are
unable to reflect the human writing process, the proposed model directly handles sequential online Chinese handwritings.
Generally, our model consists of three sub-models: a content encoder, a style encoder and a decoder, which are all Recurrent
Neural Networks. In order to adaptively obtain the style information, we introduce an attention-based adaptive style block which
has been experimentally proven to bring considerable improvement to our model. In addition, to disentangle the latent style
information from characters written by any writers effectively, we adopt metric-based meta learning and pre-train the style
encoder using a carefully-designed discriminative loss function. Then, our entire model is trained in an end-to-end manner
and the decoder adaptively receives the style information from the style encoder and the content information from the content
encoder to synthesize the target output. Finally, by feeding the trained model with a content character and several characters
written by a given user, our model can write that Chinese character in the user’s handwriting style by drawing strokes one by
one like humans. That is to say, as long as you write several Chinese character samples, our model can imitate your handwriting
style when writing. In addition, after fine-tuning the model with a few samples, it can generate more realistic handwritings that
are difficult to be distinguished from the real ones. Both qualitative and quantitative experiments demonstrate the effectiveness
and superiority of our method.

CCS Concepts
• Computing methodologies → Computer vision tasks; Computer graphics; Neural networks; Learning latent representations;

1. Introduction

As we know, reading and writing play extremely important roles
in human life, which correspond to inputting information from the
world and outputting information to the world, respectively. So
the question of how to empower machine reading (i.e., character
recognition) and writing (i.e., character generation) skills has at-
tracted intensive attention in the literature. In contrast to charac-
ter recognition which has been studied by a large number of re-
searchers [ZBL17, CBX∗17, LJS19], learning to write like humans
still requires further investigation because of its complexity and di-
versity.

Generally speaking, there are two different ways to represent a
handwritten character. One is to regard it as aligned pixels (i.e.,
an image) and the other is to denote it as a sequence of strokes
(i.e., a writing trajectory, see Figure 3), corresponding to offline

† Corresponding author.

and online handwritings, respectively. The latter one usually con-
tains more information (e.g., timing) which can be converted into
the former one easily. What’s more, human beings typically write
a character by drawing strokes one by one in the pre-defined order
instead of “generating” an image at once. Most previous models
(e.g., [KX17,CZPM18]) for handwriting generation (especially for
Chinese handwritings) are based on images because of the popu-
larity of Convolutional Neural Networks (CNNs) which have been
shown to be effective in many image related tasks. Recurrent Neu-
ral Networks (RNNs) are widely used in sequence modeling, so
utilizing RNN is a promising solution to model online handwrit-
ings.

Similar to the physiological characteristics (such as the finger-
print, face and iris), the handwriting also represents a human char-
acteristic. In other words, the characteristic information contained
in the handwritings of different writers is different. Motivated by
the works of style transfer, we call this characteristic informa-
tion “style”. Our goal is to extract this “style” automatically from
several characters written by a given writer and then imitate the
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Figure 1: Some failure cases of using CNN-based models to han-
dle offline cursive Chinese handwritings. The generated results are
synthesized by zi2zi† [Tia17].

writer’s handwriting style to write. Almost all state-of-the-art mod-
els (e.g., [HB17,LFY∗17]) for image style transfer extract the style
information from some layers of a pre-trained CNN (e.g., VGG
[SZ14]). However, this scheme is unsuitable for our purpose since
what we intend to process are not images but sequential trajecto-
ries. In this paper, we adopt a metric-based meta learning strategy
and pre-train a RNN as our style encoder using a carefully designed
loss function. What’s more, an attention-based adaptive style block
(ASB) is introduced to enable the decoder to adaptively obtain style
information instead of a fixed style embedding during the decoding
process.

The main contributions of this paper are summarized as follows:

• We introduce a novel method to generate online Chinese hand-
writings with arbitrary styles. The user only needs to write a
few Chinese character samples, our model can imitate the user’s
writing style and human writing process to write, instead of syn-
thesizing a glyph image at once like other models. The source
code of our method is available at https://github.com/
ShusenTang/WriteLikeYou.
• To improve the generalization of our model on new writers, we

propose to use metric-based meta learning and pre-train our style
encoder using a well-designed loss function. In addition, unlike
many existing models whose style encoder outputs a fixed vec-
tor, we introduce an attention-based adaptive style block which
allows the decoder to adaptively receive information from the
style encoder.
• Experiments demonstrate that our method performs better com-

pared to other existing approaches and is capable of adapting
to any new writers. Moreover, the user study verifies that our
synthesized Chinese handwriting is difficult to be distinguished
from the real one.

2. Related Work

2.1. Chinese Handwriting Generation

In recent years, lots of methods have been proposed for the hand-
writing generation of alphabetic languages (e.g., English), includ-
ing methods using RNNs [Gra13, APH18, KTT20] and other ap-
proaches [AH19,LLZY18,HAB16,SIHU19,FAEC∗20]. Compared
to alphabetic languages, Chinese has a much larger charset (e.g.,
even the most commonly used Chinese charset GB2312 consists of
6763 characters) and Chinese characters have more complex shapes

† The code of zi2zi is publicly available at https://github.com/
kaonashi-tyc/zi2zi.

and topological structures. Making machines learn to write Chinese
characters is thus more interesting and challenging.

Some previous methods (e.g., [XJJL09, LHC∗15, LZCX18])
have been reported on Chinese handwriting generation by assem-
bling components of characters. They first decompose the sample
characters into reusable components and then adopt the best-suited
way to compose the target character. These models inevitably re-
quire prior knowledge such as elaborate preceding parsing, and thus
fail to satisfactorily handle characters with connected and cursive
strokes.

Recently, lots of CNN-based models for offline Chinese glyph
synthesis have emerged [RMC15, SRL∗17, ZPIE17, Tia17, ZZC18,
GGL∗19, WGL20]. However, these methods fail to reflect the pro-
cess of human writing, and cannot handle scribbled handwritings
(see Figure 1). The generated results of these methods inevitably
have problems such as inconsistent strokes, wrong topologies and
blurs.

Up to now, just a few works have been reported that aim to
deal with online Chinese handwritings. [Ha15] modifies and ex-
tends Graves’ approach [Gra13] to use LSTM to generate fake
(i.e., unreadable) Chinese characters. [ZYZ∗16] proposes a online
Chinese handwriting generation model, which is mainly for gen-
erating characters as augmentation data for their recognition net-
work. However, their model does not involve style information thus
it is style-agnostic. FontRNN [TXL∗19] utilizes a similar trans-
fer learning strategy to generate Chinese character skeletons via
RNNs. But they focus on font generation and each trained model
can only synthesize one font (same as the training set). In contrast,
our model focuses on Chinese handwriting generation, and can syn-
thesize results with arbitrary styles once it is trained without re-
training. Recently, DeepImitator [ZTY∗20] uses a CNN to extract
the style information from several handwritten character images,
which is integrated with an attention module and a RNN to gener-
ate personalized online handwritings. However, the loss they used
for style encoder is the simple cross-entropy softmax, which fails to
encourage discriminative learning of features, and DeepImitator is
not able to generalize to new character class because their character
embeddings are jointly trained with the generative model.

2.2. Sequence-to-Sequence Model

The Sequence-to-Sequence (Seq2Seq) model was first introduced
for neural machine translation [CMG∗14] which consists of two
RNNs: encoder and decoder. The encoder encodes the input se-
quence into a fixed-dimension vector, and the decoder decodes this
vector into the output sequence. After that, [BCB14,LPM15] argue
that the fixed-dimension vector is a bottleneck for improving the
performance and propose the attention mechanism, which allows
the encoder no longer try to encode the full input sequence into a
fixed-dimension vector and lets the decoder “attend” to different
parts of the input sequence at each decoding step. There exist many
other successful applications of the Seq2Seq model, such as chatbot
[QLW∗17, XLG∗17], speech recognition [CJLV16, BCS∗16] and
video representation [HHL∗17, SMS15]. Our proposed model ex-
cept the style encoder and the adaptive style block, broadly speak-
ing, is a Seq2Seq model with the attention mechanism.
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Figure 2: The architecture of our proposed model.

2.3. Metric-based Meta Learning

Meta learning, also known as “learning to learn”, aims to deploy
models that can rapidly adapt to new tasks which have never been
encountered during training. In this case, writers (i.e., handwriting
styles) correspond to the tasks and we try to enable our model to
adapt to new writers rapidly. We adopt the key idea of metric-based
meta learning: learning a metric function over objects, so we pre-
train a style encoder to learn the prior knowledge. During adap-
tation, the model integrates this prior knowledge with new tasks
to acquire new skills fast, imitating new writers’ handwritings. As
demonstrated in Section 5.4, we get the best results under the few-
shot adaptation strategy, which requires us to fine-tune the pre-
trained model. Fine-tuning a network [HR18, SRL∗17] is a widely
used and effective method for transfer learning [Ben12, ZQD∗21].
In our case, we can fine-tune the model parameters on a few sam-
ples written by a new writer for the sake of more realistic synthesis
results if the re-training dataset is available.

The crucial requirement is that the style information extracted by
the style encoder should be discriminative between different writ-
ers and compact for the same writer. Although cross-entropy soft-
max is demonstrably one of the most commonly used loss func-
tion to pre-train feature extraction networks, it is more suitable
for classification and does not explicitly encourage discriminative
learning of features. Therefore, various losses have been proposed,
such as the contrastive loss [HCL06], the triplet loss [SKP15],
and the large-margin softmax loss [LWY∗17, DGZ18, WCLL18,
WWZ∗18]. The contrastive loss and triplet loss require carefully
designed pair/triplet training procedures, hence both of them are
time-consuming and performance-sensitive. The large-margin soft-
max loss overcomes the above problems, which reduces the tar-
get activation (i.e., enforces a stricter decision criteria compared
to the normal softmax loss) to learn discriminative features and has
been successfully applied in face recognition. We discuss the large-
margin loss in detail in Section 4.3.2.

3. Overview

Given several Chinese characters written by a writer, our goal is to
imitate this writer to write realistic handwritings in the same style
by drawing strokes one by one like humans. To achieve this goal,
as depicted in Figure 2, we propose a model which mainly contains
three RNNs: (1) a content encoder, which converts the reference
input character xc into the content information, (2) a style encoder,

� � � �

Figure 3: Two Chinese char-
acters in sequential format.
Each color denotes one stroke
and integers determine the
writing order.

澳

熬

Figure 4: The style informa-
tion can be usually extracted
from the local parts of hand-
written Chinese characters.

which extracts the style information from M style input characters
Xs = {x1,x2, ...,xM} written by a given writer w ∈ W , where W
is the training writer set, and (3) a decoder, which integrates the
content and style information together and generates the output x′.
More details of our model are described in Section 4. We train our
model with supervision to force the output x′ to contain the same
style as Xs while guaranteeing the correct content from xc.

After training, we apply two different adaptation strategies. First,
because the characteristic of a certain writer to be used as the style
information can be inferred by the style encoder, our model can
be conditioned on samples from the writer w′ who is outside the
training set (i.e., w′ /∈ W), achieving zero-shot adaptation to the
new writer. Second, for the sake of better performance, we can also
fine-tune the model parameters on a few samples written by a new
writer if the retraining dataset is available, achieving few-shot adap-
tation to the new writer. Experiments show that both of these two
strategies are capable of adapting our model to new writers.

4. Method Description

4.1. Data Representation

As shown in Figure 3, a handwritten Chinese character typically
consists of several ordered strokes which can be simply represented
by a sequence of key points [P1,P2, ...,Pn]. Like other Seq2Seq
models, we also pad it out to a fixed length N in practice:

[P1,P2, ...,Pn, ...,PN ]. (1)

Then the handwritten character can be drawn in vector format,
which is more reasonable and natural than the bitmap image.

In [Gra13], Pi is a vector (∆x,∆y, p), where (∆x,∆y) ∈ R2 de-
notes the pen offset from the previous point, and p has value 1 if
this point ends a stroke and value 0 otherwise. After that, [Ha15]
expands the binary value p into a one-hot vector (p1, p2, p3) to let
the model know exactly when to stop writing after it has finished
writing a complete character. Now, p denotes three possible point
categories: (1) p1 = 1 when the pen is now touching the paper, a
line will be drawn to connect this point with the next point, (2)
p2 = 1 means that the pen is to be lifted up (i.e., end of one stroke),
and (3) p3 = 1 indicates that the model has finished writing a com-
plete character and should stop writing, so the p3 of the point Pi is
1 if and only if i > n, where n is the actual sequence length.

We use both of these two representation methods described
above and call the first representation format-3 and the second one

c© 2021 The Author(s)
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format-5. Since our content encoder and style encoder are only for
extracting information instead the writing prediction, the inputs of
them are constructed using format-3. For the opposite reason, we
use format-5 on our decoder for better predictive capability.

4.2. Content Encoder

The role of the content encoder is to encode the reference charac-
ter xc into the content information that can be perceived by the de-
coder and then informs the decoder which Chinese character should
be written. Therefore, the content encoder must have strong in-
formation extraction capability. The bidirectional recurrent neural
network (BiRNN) [SP97] has been shown to be more suitable for
information extraction than regular RNNs, so we adopt a BiRNN
(BiLSTM to be specific) as our content encoder. The content en-
coder ENCc encodes xc as hidden states Hc = ENCc(xc), where
Hc consists of N hidden vectors and each hidden vector is the con-
catenation of forward and backward states.

As mentioned in Section 2.2, attention mechanisms are widely
used and proved to be effective in Seq2Seq models, so we apply
the attention mechanism between the content encoder and decoder.
Consequently, at the decoding time step t, the content input of de-
coder is:

ct = attention(Hc,ht−1), (2)

where ht−1 is the decoder hidden state at the previous time step, and
attention(·) is an attention mechanism. As suggested by [TXL∗19],
here we use the monotonic attention [RLL∗17] (refer to the supple-
mentary materials for details) in our experiments.

4.3. Style Encoder

The style encoder is the core of our model, which not only needs
to effectively extract the style information of writers in the training
set, but also be able to adapt to new writers rapidly.

4.3.1. Architecture

Like the content encoder, the style encoder is also a BiRNN,
but the input is not a single character xc but multiple ones (i.e.,
Xs = {x1,x2, ...,xM}). The style encoder ENCs encodes Xs as hid-
den states Hs = ENCs(Xs), where Hs is a M by N matrix of hidden
vectors.

As shown in Figure 4, the style information of handwritten Chi-
nese characters is often contained in local parts, e.g., the tips of
writing brushes and connected strokes. Therefore, we introduce an
attention-based adaptive style block (ASB) to allow the decoder to
acquire style information adaptively instead of a fixed style vector
(e.g., the mean of all hs,i, j) during the decoding process. First, we
flatten the Hs into a sequence of vectors:

H′s = [hs,1,1,hs,1,2, ...,hs,M,N ], (3)

now we can apply the attention mechanism like Equation (2):

st = attention(H′s,ht−1), (4)

where ht−1 is the decoder hidden state at the previous time step.

Here the attention(·) is computed as:

st =
M

∑
i=1

N

∑
j=1

αt,i, jhs,i, j (5)

αt,i, j =
exp(scoret,i, j)

∑
M
m=1 ∑

N
n=1 exp(scoret,m,n)

(6)

scoret,i, j = ht−1Whs,i, j, (7)

where W is a trainable parameter matrix. The score calculation
method in Equation (7) is proposed by [LPM15], another com-
monly used option is:

scoret,i, j = vT tanh(Wht−1 +Uhs,i, j), (8)

which is proposed by [BCB14]. Experimental results presented in
Section 5.3.1 shows that the first method is slightly better than the
second one in our application.

4.3.2. Pre-training

Pre-training the style encoder is a key step to make our method
work, it enables our model to adapt to new writers quickly. During
pre-training, the style encoder converts each input character into the
sequence of hidden states [h1,h2, ...,hN ] and constructs the output
feature x by:

x =
N

∑
i=1

αihi. (9)

There are two common strategies of calculating the above weight
αi: (1) αi = 1 if and only if i = N, this means x is the last hid-
den state hN

‡; (2) αi = 1/N for all i, this means x is equal to the
average of all hidden states. As we can see from Figure 4, as men-
tioned in Section 4.3.1, we argue that the style information con-
tained in a handwritten Chinese character is not evenly distributed,
the network should learn to let x focus on those style-plentiful hid-
den states. Therefore, we propose to calculate αi as:

αi =
exp(score(h̄,hi))

∑
N
j=1 exp(score(h̄,h j))

, where score(h̄,hi) = h̄Vhi, (10)

h̄ = 1
N ∑

N
i=1 hi and V is a trainable parameter matrix. Here we use

the same method of calculating score(·) as in Equation (7) for the
consistency of pre-training and decoding inference. Experiments in
Section 5.3.2 show that this strategy of getting αi is much better
than the two commonly used methods mentioned above.

Then, we can pre-train the style encoder to obtain the discrimi-
native feature x, e.g., using the cross-entropy softmax loss for style
classification (writer identification in this case). Recently, the large-
margin softmax loss [LWY∗17, DGZ18, WCLL18, WWZ∗18] be-
comes popular for discriminative feature learning, which can be
regarded as an improvement over the original softmax loss. Given
the feature xi and its label yi, the original softmax loss is computed

‡ In practice we take the actual sequence length n instead of N.
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as

L =
1
B

B

∑
i=1
− log(

exp(wT
yi xi)

∑
C
j=1 exp(wT

j xi)
)

=
1
B

B

∑
i=1
− log(

exp(||wyi || ||xi||cosθyi,i)

∑
C
j=1 exp(||w j|| ||xi||cosθ j,i)

),

(11)

where B is the batch size, C is the number of categories (e.g., the
number of writers in this case), w j denotes the output layer weights
corresponding to the writer j, θ j,i is the angle between w j and xi,
and the bias is set to zero. If we normalize the weight ||w j|| = 1
and ||xi||= 1, then we get the modified softmax:

Lmodified =
1
B

B

∑
i=1
− log(

exp(s · cosθyi,i)

∑
C
j=1 exp(s · cosθ j,i)

), (12)

where s is the scaling factor. At this point the loss is only deter-
mined by the angle between the weight w and the feature x, the
smaller the angle between wyi and xi is, the greater the probability
that xi will be correctly classified into yi is, and the smaller the loss
is. The key idea of the large-margin softmax loss is to force this
angle to be rather small, so the penalty margins are introduced to
the target logit (cosθyi,i):

ψ(θyi,i) = cos(m1θyi,i +m2)−m3, (13)

where m1, m2 and m3 are penalty margins and often used sepa-
rately, corresponding to angular softmax (A-Softmax) [LWY∗17],
additive angular margin softmax (Arc-Softmax) [DGZ18] and AM-
Softmax [WCLL18, WWZ∗18], respectively. Combining Equation
(12) and (13) we formulate the large-margin softmax loss as:

LLM =
1
B

B

∑
i=1
− log(

exp(s ·ψ(θyi,i))

exp(s ·ψ(θyi,i))+∑
C
j=1, j 6=yi

exp(s · cosθ j,i)
).

(14)

Experiments in Section 5.3.3 indicate that the large-margin soft-
max loss used in our application does not work as well as it does
in face recognition. Possible reasons are as follows: (1) a person’s
handwriting is more diverse than his face pictures; (2) the numbers
of individuals in face datasets (e.g., the relatively small face dataset
CASIA-WebFace [YLLL14] contains 494,414 training faces be-
longing to 10,575 different individuals) are much larger than the
Chinese handwriting dataset we use. Therefore, we propose to min-
imize the angle between the feature xi and the average of features
corresponding to the writer yi instead of the weight wyi , and intro-
duce the angular center loss (LAC). For simplicity, we specify that
one training batch contains Bw different writers, each writer con-
sists of Bs samples, then we compute LAC as:

LAC =
1
B

B

∑
i=1
− log(

exp(s ·φ(βyi,i))

exp(s ·φ(βyi,i))+∑ j∈C, j 6=yi
exp(s · cosβ j,i)

)

(15)

φ(βyi,i) = cos(βyi,i)−m, (16)

where C (|C| = Bw) is the writer set in the current batch, and β j,i
is the angle between the average of features of the corresponding
writer j and the feature xi:

cosβ j,i =
cT

j xi

||c j|| ||xi||
, where c j =

1
Bs

∑
yk= j

xk. (17)

As shown in Equation (16), we also introduce the penalty mar-
gin into LAC. Here we only use one margin m because preliminary
experiments show that the performance gain of combination use is
relatively small and the hyper parameters are difficult to be tuned
well.

It is worth mentioning that the proposed LAC is different from the
center loss [WZLQ16] which minimizes the Euclidean distance of
the feature and the global centroid of features corresponding to its
class. The center loss requires all class centers to be stored in mem-
ory and updated with gradient descent, hence it is computationally
expensive and cannot converge in our case.

4.4. Decoder

The RNN-based decoder predicts the next point conditioned on the
previous output and the current content and style information from
the content encoder and style encoder, respectively.

At the current decoding time step t, the previous target point
Pt−1 (represented as format-5, and it is the previous output P′t−1
in testing) is concatenated with the content output ct and the style
output st as at = [Pt−1;ct ;st ] for decoding: ht = DEC(ht−1,at),

where ht is the decoder hidden state at time step t. Then ht will
be mapped into ot for predicting the output point P′t through a
linear layer. As suggested by [Gra13], we model the point offset
(∆x,∆y) using the Gaussian mixture model (GMM) with R bivari-
ate normal distributions, and point categories (p1, p2, p3) using a
three-category classifier (i.e., a softmax layer). Therefore, ot is rep-
resented as:

ot = [{πr,µr
x,µ

r
y,δ

r
x,δ

r
y,ρ

r
xy}R

r=1,q1,q2,q3], (18)

where the superscript r above stands for the rth distribution in
GMM. Then we can optimize model parameters by minimizing the
negative log-likelihood:

Lo =−
1
n

n

∑
i=1

log(p(∆xi,∆yi)), (19)

p(∆x,∆y) =
R

∑
r=1

π
rN (∆x,∆y|µr

x,µ
r
y,δ

r
x,δ

r
y,ρ

r
xy), (20)

where n is the number of target points and N (·) is the bivariate
normal distribution function.

With regard to the point category, we use the cross entropy loss
between the target p and the predicted q:

Lc =−
1
N

N

∑
i=1

3

∑
k=1

pk,i log(qk,i), (21)

where N is the fixed maximum length described in Section 4.1.

In addition, we utilize the style cycle loss to explicitly optimize
the style of output to be consistent with the style input Xs:

Lcycle = ||x′− x̄||1, (22)

where x′ is the style feature of the decoder output extracted by the
style encoder using Equation (9), while x̄ is the average feature of
the style input Xs.
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Figure 5: Examples of datasets we use for (a) the reference input
and (b) the style input.

Finally, the total loss function is defined as the weighted sum of
Lo, Lc and Lcycle:

L = Lo +λcLc +λcycleLcycle, (23)

where λc and λcycle are hyper parameters that control the weights
of Lc and Lcycle, respectively.

For testing, unlike the training process, we obtain the current
point P′t by sampling from the GMM determined by the current
output ot and then feed the sampled P′t as input for the next time
step. We continue this sample process until p′3,i = 1 or when i = N,
so the sampled output [P′1,P

′
2, ...,P

′
n, ...,P

′
N ] is not deterministic but

random. This is very similar to the human writing process: each
time we write the same character, it looks slightly different.

5. Experiments

5.1. Experimental Setup

5.1.1. Datasets

As described in Section 3, the input of our model contains two
parts: a reference character xc and M style characters Xs. The ref-
erence input only tells the model which character should be gener-
ated, so theoretically glyphs in any neat font can be used as the ref-
erence characters, and here we adopt the commonly used average
Chinese font [JLTX19] after manual point-annotation (see Figure
5(a)). With regard to the style input Xs, we use the CASIA Online
Chinese Handwriting Databases [LYWW11] (see Figure 5(b)) in-
cluding OLHWDB1.0, OLHWDB1.1 and OLHWDB1.2 for train-
ing and the Competition Test for testing§. In total, we have about
3.7 million Chinese characters written by 1020 writers for train-
ing and about 0.2 million characters written by 60 writers for test-
ing. To explore the capability of generalization to new contents,
1/10 contents are left for evaluation rather than training. In addi-
tion, in order to avoid the negative impact of redundant points dur-
ing learning and meanwhile reduce the number of points, as sug-
gested by [HE17], we adopt the Ramer-Douglas-Peucker [DP73]
algorithm (parameter ε is set to 4.0) on our data to remove redun-
dant points. After simplification, more than 98% of the samples
have less than 110 points, so we set the fixed maximum length N
in Equation (1) to 110 and discard the points that exceed this max-
imum length.

§ The details of these databases can be found on http:
//www.nlpr.ia.ac.cn/databases/handwriting/Home.html.
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Figure 6: The good general-
ization ability of our method in
terms of content.

Figure 7: The heatmap of the
DTW matrix.

5.1.2. Implementation Details

In our experiments, the content encoder and decoder are both
single-layer LSTMs with hidden sizes of 256 and 512 respectively,
while the style encoder consists of three stacked LSTMs with the
hidden size of 256. We set λc = 2.0 and λcycle = 5.0. We use the
Adam [KB14] optimizer to train our model with the batch size of
128 (1024 for pre-training the style encoder), learning rate of 0.001
and gradient clipping of 1.0. For data augmentation, as suggested
by [HE17], we multiply the offset (∆x,∆y) by a random scale factor
in the range [0.90,1.10] and dropping some points randomly with a
probability of 0.10. Unless otherwise specified, we set the penalty
margin m in Equation (16) to 0.2 and the number of style input
characters M to 10.

5.1.3. Evaluation Metric

Dynamic time warping (DTW) [BC94] is used to calculate the dis-
tance between two sequences with different lengths and hence we
use DTW to evaluate the similarity between the real and generated
handwritings, lower DTW indicates higher similarity. As suggested
by [TXL∗19], the DTW distance will be normalized by the spatial
scale and length of real handwritings.

In addition, to quantitatively evaluate our method in terms of
content and style separately, we utilize two classifiers to score
the generated handwriting. Specifically, for content evaluation, we
train a character recognizer on the training set and use the recogni-
tion accuracy on generated handwriting as the Content Score, while
for style evaluation, we similarly utilize a style classifier (i.e., writer
identification) trained on the testing set (containing 60 writers) and
regard its classification accuracy on the generated handwriting as
the Style Score. Since the generated results are almost all readable
and the Content Score is always extremely close to 1.0 (e.g., Table
4), we mainly show and discuss the Style Score. The details of these
evaluation metrics can be found in the supplementary materials.

5.2. Exploratory Experiments

5.2.1. Generalization to New Contents

Although we mainly focus on style modeling, our model general-
izes well to new contents (i.e., xc) which have not appeared dur-
ing training. As shown in Figure 6, we compute the average Style
Score and Content Score of the generated results when inputting
seen/unseen contents, respectively. We can see that the generated
result has surprisingly higher Style Score and expectedly a bit lower
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Figure 8: Illustration of
model performance with dif-
ferent numbers of input style
characters.

Figure 9: Comparison of our
methods fine-tuned on datasets
with different sizes.

Content Score if the corresponding content input xc has not ap-
peared during training. This demonstrates that our method is robust
in content modeling. In all the following experiments, the test input
contents have not appeared during training.

5.2.2. Different m

The hyper parameter m in LAC controls the degree of penalty mar-
gin added in the target logit. Theoretically, the larger the m is, the
more discriminative the characteristics of different writers learned
by the style encoder are, and the higher the Style Score is. The ex-
perimental results, as listed in the bottom row of Table 3, show that
a moderate penalty leads to better performance as expected, but if
the penalty is too large, the model performance will decrease (i.e.,
m = 0.3) or even cannot converge (i.e., m = 0.4). This is because
if we apply a too large penalty, LAC will become too difficult to
be optimized. Here we obtain the best result at m = 0.2 which is
adopted by our model in other experiments.

5.2.3. Different M

The only source of style information is the style input characters
Xs = {x1,x2, ...,xM} whose size M obviously affects the model’s
performance. As shown in Figure 8, with more input style charac-
ters available, the Style Score improves as expected, meaning that
the synthesized handwriting contains richer style information. But
due to the limitation of memory size and the unnoticeable improve-
ment of performance when M is too large, the style input size M is
fixed as 10 in other experiments.

5.2.4. Consistency of Style

The style inputs Xs are sampled randomly from the handwriting
set, so how consistent are the generated results when different Xs
sampled from the same writer are used? We conduct two tests on a
same trained model and generate 200 characters for each test writer
in each test. As shown in Figure 7, we calculate the average DTW
value (multiplied by 1000) between every two test writers and get a
DTW square matrix. The dark diagonal in Figure 7 means that the
generated results using different style inputs written by the same
writer are very similar, and proves the effectiveness of the style
encoder from the side.

5.3. Ablation Studies

In this section, we conduct several experiments to verify the effec-
tiveness of each key module in our method.

Train Style Score Test Style Score

w/o ASB 0.812±0.008 0.422±0.015
Bahdanau [BCB14] ASB 0.840±0.007 0.593±0.009
Luong [LPM15] ASB 0.841±0.008 0.604±0.011

Table 1: The ablation study results of the attention-based adaptive
style block (with 95% confidence interval, similarly hereinafter).
The Train Style Score and Test Style Score represent the Style
Score on the training and test sets, respectively.

Last Average Ours

Style Score 0.580±0.012 0.328±0.012 0.604±0.011
DTW ×103 1.513±0.004 1.558±0.006 1.487±0.004

Table 2: Comparison of three pre-training strategies.

5.3.1. Adaptive Style Block

The quantitative results to verify the effectiveness of the proposed
ASB described in 4.3.1 are shown in Table 1. The Bahdanau and
Luong denotes two different score calculation methods described
in Equation (8) and (7), respectively. Table 1 shows that if we re-
move our ASB (i.e., the decoder receives a fixed style vector), the
Train Style Score will not drop much while the Test Style Score
will decline sharply. This demonstrates that the proposed ASB im-
proves our model’s generalization capability and thus enables the
model to adapt to new writers effectively. In addition, the Luong
ASB performs better than the Bahdanau ASB in our case.

5.3.2. Pre-training Strategy

Pre-training the style encoder is a key step in our method. Prelim-
inary experiments show that our model will not fully converge if
we train it from scratch. As mentioned in Section 4.3.2, during pre-
training, there exist two common ways for calculating the output
feature x in Equation (9): taking the last hidden state directly, or
averaging all hidden states. Instead, we propose to calculate x us-
ing a method similar to the attention (see Equation (10)). Table 2
demonstrates that the averaging strategy works rather poorly and
our method outperforms the other two.

5.3.3. Pre-training Loss

We conduct a series of experiments to summarize the performance
of different pre-training losses. As we can see in Table 3, although
the large-margin softmax loss with small penalty margin (e.g.,
m1 = 2, m2 = 0.1 or m3 = 0.1) outperforms the modified softmax,
once we add a slightly larger margin to the modified softmax (e.g.,
m1 = 4, m2 = 0.2/0.3 or m3 = 0.2/0.3), the performance decreases
and becomes worse than the original modified softmax. And the
proposed LAC outperforms all other losses with the wide range of
the margin m. We already discussed the effects of different m in
detail in Section 5.2.2.

5.3.4. Style Cycle Loss

We conduct an experiment to see how the model performs under
different weights (λcycle) of the style cycle loss. As shown in Table

c© 2021 The Author(s)
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Margin Style Score DTW ×103

Softmax / 0.503±0.013 1.531±0.005
Modified Softmax / 0.541±0.015 1.519±0.004

A-Softmax [LWY∗17]
m1 = 2 0.559±0.009 1.512±0.004
m1 = 4 N/A N/A

Arc-Softmax [DGZ18]
m2 = 0.1 0.567±0.013 1.507±0.007
m2 = 0.2 0.520±0.012 1.525±0.005
m2 = 0.3 0.485±0.014 1.533±0.006

AM-Softmax [WCLL18, WWZ∗18]
m3 = 0.1 0.555±0.010 1.499±0.004
m3 = 0.2 0.484±0.011 1.529±0.006
m3 = 0.3 0.471±0.014 1.527±0.007

LAC (Ours)

m = 0 0.538±0.013 1.521±0.004
m = 0.1 0.569±0.011 1.514±0.006
m = 0.2 0.604±0.011 1.487±0.004
m = 0.3 0.582±0.010 1.496±0.004
m = 0.4 N/A N/A

Table 3: Comparison of different pre-training losses with various
degrees of penalty margins. N/A indicates that the model has not
converged.

λcycle 0 0.1 1.0 5.0 10.0 20.0

Style Score 0.588 0.596 0.594 0.604 0.603 0.605
Content Score 0.994 0.994 0.993 0.988 0.971 0.946
Lcycle / 0.139 0.102 0.099 0.096 0.083

Table 4: Evaluation of different weights of style cycle loss.

4, as the weight increases, the style cycle loss Lcycle gradually de-
creases, and the Style Score gradually increases, as expected. Nev-
ertheless, too much attention to style information will cause the lose
of some content information. Therefore, we set the weight of Lcycle
to 5.0 for the trade-off between style and content consistency.

5.4. Few-shot Adaptation

The above experiments are conducted without fine-tuning on the
specific testing writer, corresponding to zero-shot adaptation (i.e.,
the fine-tuning set size is equal to 0) as described in Section 3. In
this section, we fine-tune the trained model on a few handwritten
characters to synthesize more realistic results which are difficult to
be distinguished from the real handwritings.

5.4.1. Fine-tuning Size

For each writer w′ in the testing set, we fine-tune our model on
a small fine-tuning set which contains a few characters written by
the writer w′. Intuitively, the size of this set can affect the quality
of synthesized results. As depicted in Figure 9, the quality improve
quickly as the fine-tuning size gets larger, which becomes good
enough (i.e., the Style Score is close to 1) when it exceeds 100.
It is worth mentioning that it only takes a few hundred seconds for
fine-tuning. This verifies that our model can be well adapted to new
writers. Examples of synthesized results with different fine-tuning
set sizes are shown in Firgure 10.

5.4.2. Mix the Spurious with the Genuine

Figure 10 depicts that the generated handwriting is very similar to
the real one. To further verify how realistic the synthesized spu-
rious handwriting is, we conduct a user study. Our questionnaire
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Figure 10: Visual comparison of few-shot adaptation with different
fine-tuning set sizes.

contains 50 questions. For each question (see the supplementary
materials for details), given samples of a writer’s handwriting, we
ask participants to point out one character from the four candidates
which they think is most likely written by that writer. The four ran-
domly arranged candidates are the genuine handwriting, handwrit-
ings generated by our model without and with fine-tuning (with the
fine-tuning size of 100, FT-100 for short), and the same character
written by a random different writer. Finally, 101 individuals took
part in our test, the statistical preference is shown in Table 6, which
indicates that the participants are struggling to point out the differ-
ence between the genuine (real) and spurious (w/o FT and FT-100)
handwritings. Namely, the synthesized handwriting is too realistic
to be distinguished from the real handwriting. A large number of
generated results can be found in the appendix of the supplemen-
tary materials.

5.4.3. Visualization of the Style Features

Figure 11 shows the t-SNE projection [MH08] of the style fea-
tures (calculated by Equation (9)) using zero-shot adaptation (a)
and few-shot adaptation (b). In this experiment, we randomly se-
lected 10 test writers, for each writer, we randomly select 100 real
handwritten characters, 100 characters synthesized by our model
with/without fine-tuning. From Figure 11 we can see that regard-
less of using zero-shot adaptation or few-shot adaptation, there are
obvious clusters for all writers, with a rather large inter-writer dis-
tance and a low intra-writer separation. Moreover, the projections
of the style features of real and generated samples almost overlap
in both (a) and (b). Therefore, Figure 11 demonstrates both an ease
of correctly identifying the writer through a given generated hand-
writing and the difficulty in distinguishing real handwritings from
synthesized ones.

5.4.4. Ablation Studies after Fine-tuning

The results of ablation studies conducted in Section 5.3 prove that
our proposed methods are effective under the zero-shot adaptation
configuration, which is pretty valuable because in most cases we
don’t have additional data to fine-tune the model. It is also interest-
ing to figure out whether the effectiveness can preserve after fine-
tuning or not. The experimental results are shown in Table 5. Al-
though the gaps between different settings have been reduced after
fine-tuning, our proposed designs are still quite competitive.

c© 2021 The Author(s)
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(a) w/o FT (b) FT-100

Figure 11: T-SNE visualization of the style features of our synthe-
sized handwritings and real ones.

Pre-training Loss ASB Pre-training strategy Style Score

LAC (Ours, m = 0.2)

× Ours 0.861±0.012√
Last 0.929±0.009√

Average 0.852±0.010√
Ours 0.937±0.009

Softmax
√

Ours 0.902±0.010

Modified Softmax
√

Ours 0.909±0.009

A-Softmax (m1 = 2)
√

Ours 0.926±0.010

Arc-Softmax (m2 = 0.1)
√

Ours 0.930±0.010

AM-Softmax (m3 = 0.1)
√

Ours 0.923±0.010

Table 5: The results of ablation studies after fine-tuning (with the
fine-tuning size of 100).

real w/o FT FT-100 real-diff

Prefer. (%) 34.3 27.1 29.6 9.0

Table 6: Results of the user study described in Section 5.4.2.

5.4.5. Synthesis versus Retrieval

Given a writer in the test set, we retrieve the most similar writer
from the training set which has the lowest DTW value and then
compute the Style Score. Finally, we get a Style Score of 0.162
which is very low compared to our model (see Table 7). This
verifies the style diversity between the training and test sets, and
demonstrates that our model does not simply remember the train-
ing styles but extract the new the target style using its style encoder.

5.5. Comparison with the State of the Art

As mentioned in Section 2.1, FontRNN [TXL∗19] was proposed
to generate large-scale Chinese fonts via RNN, as well as to
synthesize stylized online Chinese handwriting, and DeepImita-
tor [ZTY∗20], a multi-module framework, was introduced to ad-
dress the problem of personal handwriting generation. In this sec-
tion, we conduct qualitative and quantitative experiments to com-
pare our model with FontRNN and DeepImitator to verify the su-
periority of our method.

5.5.1. Visual Comparison

We first visualize the results generated by different methods for
qualitative comparison. As shown in Figure 12, although FontRNN

Metrics DeepImitator FontRNN
Ours

w/o FT FT-100

Content Score 0.834±0.008 0.875±0.007 0.988±0.005 0.987±0.006
Style Score 0.432±0.014 0.233±0.020 0.604±0.011 0.937±0.009
DTW ×103 1.604±0.005 1.629±0.012 1.487±0.004 1.323±0.004
Prefer. (%) 12.35 9.64 36.44 41.57

Table 7: Quantitative comparisons with FontRNN [TXL∗19] and
DeepImitator [ZTY∗20].

Figure 12: Visual comparison with FontRNN [TXL∗19] and
DeepImitator [ZTY∗20].

and DeepImitator can synthesize readable cursive Chinese hand-
written characters, it fails to generate samples consistent with the
target style. What is worse, for different target writers, FontRNN
needs to be re-trained, while our model is capable of adapting to
new writers well with no time (zero-shot adaptation) or little time
(few-shot adaptation) needed.

5.5.2. Quantitative Comparison

We also perform quantitative comparisons. As we can see from Ta-
ble 7, the Content Score values of DeepImitator and FontRNN are
both relatively high while their Style Score and the DTW values
are unsatisfactorily poor, indicating that it is difficult for them to
handle the style of cursive Chinese handwriting. In addition, a user
study is also designed to further compare our method with them
(see the supplementary materials for details). Participants need to
choose the one out of the four candidate fake handwritten charac-
ters that is most similar as the real one. We finally collect 101 valid
questionnaire submissions, the preference of characters generated
by different methods are listed in the last row of Table 7. We can see
that participants consider that in most cases the results generated by
our methods are more similar to real ones, while only 12.35% and
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Figure 13: Examples of the brush-writing characters that cannot
be handled by our method directly.

9.64% of the characters synthesized by DeepImitator and FontRNN
are selected as preferred, respectively.

6. Limitations

Because our model is made up of RNNs whose training can-
not be parallelized along the time dimension, both the operations
of forward and back propagation are relatively slow. Specifically,
the training time for one epoch takes about 10 hours on a sin-
gle GeForce GTX 1080 Ti GPU. Besides, the Chinese handwriting
discussed in this paper is limited to the writing trajectory without
contour, so our model cannot directly handle brush-writing charac-
ters. Examples of brush-writing characters can be found in Figure
13. Appending an extra network to recover the contour shape for
the trajectory generated by our method is a potential solution. At
last, we only discuss the isolated Chinese handwritten characters in
this paper. We are planing to explore the generation of the coherent
handwritten text segments in our future work.

7. Conclusion

In this paper, we proposed a Seq2Seq model using metric-based
meta learning to synthesize cursive Chinese characters written by
any writers in sequential format which is more natural and valu-
able than the traditional image format. To enhance the capability of
adapting to new writers rapidly, we introduced an attention-based
adaptive style block and pre-trained the style encoder using an ef-
fectively designed strategy with our proposed angular center loss.
The purpose of pre-training is not obtaining a fixed model but a
learner that can quickly learn how to extract the style information
from new writers’ handwritings. After training, we introduced two
adaptation strategies: zero-shot adaptation and few-shot adaptation.
For zero-shot adaptation, our method can imitate any new writer’s
writing style without spending more time for adaptation. With few-
shot adaptation, the synthesized handwritten characters are difficult
to be distinguished from real samples as long as we fine-tune the
model for only several hundred seconds. We conducted both quali-
tative and quantitative experiments to demonstrate the effectiveness
of our method and its superiority compare to the state of the art.
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